Study programme 2020-2021Français
Artifical intelligence
Programme component of Master's in Computer Science à la Faculty of Science

Students are asked to consult the ECTS course descriptions for each learning activity (AA) to know what special Covid-19 assessment methods are possibly planned for the end of Q3

CodeTypeHead of UE Department’s
contact details
US-MC-INFO60-005-MCompulsory UEMELOT HadrienS825 - Algorithmique
  • MELOT Hadrien

of instruction
of assessment
HT(*) HTPE(*) HTPS(*) HR(*) HD(*) CreditsWeighting Term
  • Français
Français301500055.002nd term

AA CodeTeaching Activity (AA) HT(*) HTPE(*) HTPS(*) HR(*) HD(*) Term Weighting
S-INFO-014Artificial Intelligence3015000Q2100.00%
Programme component

Objectives of Programme's Learning Outcomes

  • Have acquired highly specialised and integrated knowledge and broad skills in the various disciplines of computer science, which come after those within the Bachelor's in computer science.

Learning Outcomes of UE

The goal of this course if to initiate the students to classical fields of Artificial Intelligence. The students will be able to identify when a particular method can be applied. The course will concentrate on algorithmic aspect of Artificial Intelligence.

Content of UE

See unique learning activity.

Prior Experience

Knowledge of a programming language (e.g., Python ou Java) and of basic data structures (lists, trees, graphs).

Type of Assessment for UE in Q2

  • Written examination
  • Graded tests

Q2 UE Assessment Comments

Written exam 85%
Exercices 15%

Type of Assessment for UE in Q3

  • Oral examination

Q3 UE Assessment Comments

Oral exam 100%

Type of Teaching Activity/Activities

AAType of Teaching Activity/Activities
  • Cours magistraux
  • Exercices dirigés

Mode of delivery

AAMode of delivery
  • Face to face

Required Reading


Required Learning Resources/Tools

AARequired Learning Resources/Tools
S-INFO-014Not applicable

Recommended Reading


Recommended Learning Resources/Tools

AARecommended Learning Resources/Tools
S-INFO-014Not applicable

Other Recommended Reading

AAOther Recommended Reading
S-INFO-014- Russel, S. and Norvig, P., Artificial Intelligence: A Modern Approach, 3ième édition, Pearson, 2010
- Talbi, E.-G., Metaheuristics: from design to implementation, Wiley, 2009

Grade Deferrals of AAs from one year to the next

AAGrade Deferrals of AAs from one year to the next
(*) HT : Hours of theory - HTPE : Hours of in-class exercices - HTPS : hours of practical work - HD : HMiscellaneous time - HR : Hours of remedial classes. - Per. (Period), Y=Year, Q1=1st term et Q2=2nd term
Date de génération : 09/07/2021
20, place du Parc, B7000 Mons - Belgique
Tél: +32 (0)65 373111