Study programme 2023-2024Français
Computer Vision
Programme component of Master's in Computer Science (MONS) (day schedule) à la Faculty of Science

CodeTypeHead of UE Department’s
contact details
Teacher(s)
US-M1-SCINFO-072-MOptional UEGOSSELIN BernardF105 - Information, Signal et Intelligence artificielle
  • GOSSELIN Bernard
  • MANCAS Matei

Language
of instruction
Language
of assessment
HT(*) HTPE(*) HTPS(*) HR(*) HD(*) CreditsWeighting Term
  • Anglais
Anglais, Français162000033.002nd term

AA CodeTeaching Activity (AA) HT(*) HTPE(*) HTPS(*) HR(*) HD(*) Term Weighting
I-ISIA-005Computer Vision1620000Q2100.00%

Programme component

Objectives of Programme's Learning Outcomes

  • Have acquired highly specialised and integrated knowledge and broad skills in the various disciplines of computer science, which come after those within the Bachelor's in computer science.
  • Manage large-scale software development projects.
    • Apply, mobilise, articulate and promote the knowledge and skills acquired in order to help lead and complete a project.
    • Lead a project by mastering its complexity and taking into account the objectives, allocated resources and constraints that characterise it.
    • Demonstrate independence and their ability to work alone or in teams.
  • Manage research, development and innovation.
    • Understand unprecedented problems in computer science and its applications.
    • Organise and lead a research, development or innovation project to completion.
    • Methodically research valid scientific information, lead a critical analysis, propose and argue potentially innovative solutions to targeted problems.
  • Master communication techniques.
    • Communicate, both orally and in writing, their findings, original proposals, knowledge and underlying principles, in a clear, structured and justified manner.
    • Where possible, communicate in a foreign language.
  • Apply scientific methodology.
    • Critically reflect on the impact of IT in general, and on the contribution to projects.

Learning Outcomes of UE

develop image processing techniques, together with a critical analysis of the problem;
apply image coding, analysis, segmentation adn feature extraction techniques
apply classification and machine learning techniques (deep learning)

UE Content: description and pedagogical relevance

Image Processing, Image acquisition; lowlevel processing, filtering, transforms; image segmentation and registration;
Image Coding, Deep Learning

Prior Experience

fundamentals of signal processing; probability and statistics

Type of Teaching Activity/Activities

AAType of Teaching Activity/Activities
I-ISIA-005
  • Cours magistraux
  • Travaux pratiques
  • Projet sur ordinateur
  • Etudes de cas

Mode of delivery

AAMode of delivery
I-ISIA-005
  • Hybrid

Required Learning Resources/Tools

AARequired Learning Resources/Tools
I-ISIA-005Not applicable

Recommended Learning Resources/Tools

AARecommended Learning Resources/Tools
I-ISIA-005Not applicable

Other Recommended Reading

AAOther Recommended Reading
I-ISIA-005Not applicable

Grade Deferrals of AAs from one year to the next

AAGrade Deferrals of AAs from one year to the next
I-ISIA-005Unauthorized

Term 2 Assessment - type

AAType(s) and mode(s) of Q2 assessment
I-ISIA-005
  • Oral examination - Face-to-face

Term 2 Assessment - comments

AATerm 2 Assessment - comments
I-ISIA-005Oral exam with written preparation time, without course material

Term 3 Assessment - type

AAType(s) and mode(s) of Q3 assessment
I-ISIA-005
  • Oral examination - Face-to-face

Term 3 Assessment - comments

AATerm 3 Assessment - comments
I-ISIA-005Oral exam with written preparation time, without course material
(*) HT : Hours of theory - HTPE : Hours of in-class exercices - HTPS : hours of practical work - HD : HMiscellaneous time - HR : Hours of remedial classes. - Per. (Period), Y=Year, Q1=1st term et Q2=2nd term
Date de dernière mise à jour de la fiche ECTS par l'enseignant : 29/06/2023
Date de dernière génération automatique de la page : 18/05/2024
20, place du Parc, B7000 Mons - Belgique
Tél: +32 (0)65 373111
Courriel: info.mons@umons.ac.be