Study programme 2023-2024Français
Advanced and Streaming AI
Programme component of Master's in Mathematics (MONS) (day schedule) à la Faculty of Science

CodeTypeHead of UE Department’s
contact details
Teacher(s)
US-M1-SCMATH-058-MOptional UESIEBERT XavierF151 - Mathématique et Recherche opérationnelle
  • SIEBERT Xavier
  • MAHMOUDI Sidi

Language
of instruction
Language
of assessment
HT(*) HTPE(*) HTPS(*) HR(*) HD(*) CreditsWeighting Term
  • Anglais
  • Anglais, Français
Anglais, Français303000055.001st term

AA CodeTeaching Activity (AA) HT(*) HTPE(*) HTPS(*) HR(*) HD(*) Term Weighting
I-MARO-202Advanced Machine Learning2424000Q180.00%
I-ILIA-202Advanced Deep Learning66000Q120.00%

Programme component

Objectives of Programme's Learning Outcomes

  • Have integrated and elaborate mathematical knowledge.
    • Mobilise the Bachelor's course in mathematics to address complex issues and have profound mathematical expertise to complement the knowledge developed in the Bachelor's course.
    • Use prior knowledge to independently learn high-level mathematics.
  • Apply innovative methods to solve an unprecedented problem in mathematics or within its applications.
    • Mobilise knowledge, and research and analyse various information sources to propose innovative solutions targeted unprecedented issues.
    • Appropriately make use of computer tools, as required by developing a small programme.
  • Adapt to different contexts.
    • Have developed a high degree of independence to acquire additional knowledge and new skills to evolve in different contexts.
    • Critically reflect on the impact of mathematics and the implications of projects to which they contribute.
    • Demonstrate thoroughness, independence, creativity, intellectual honesty, and ethical values.

Learning Outcomes of UE

Get familiar with the contemporary methods in machine learning (active learning, reinforcement learning, depp networks) Study these methods within the frameworks of statistical learning theory      

 

UE Content: description and pedagogical relevance

active learning, reinforcement learning, deep networks, statistical learning theory

Prior Experience

machine learning basics, python programming
 

Type of Teaching Activity/Activities

AAType of Teaching Activity/Activities
I-MARO-202
  • Cours magistraux
  • Travaux pratiques
I-ILIA-202
  • Cours magistraux
  • Travaux pratiques
  • Projet sur ordinateur
  • Etudes de cas

Mode of delivery

AAMode of delivery
I-MARO-202
  • Face-to-face
I-ILIA-202
  • Face-to-face

Required Learning Resources/Tools

AARequired Learning Resources/Tools
I-MARO-202Not applicable
I-ILIA-202Not applicable

Recommended Learning Resources/Tools

AARecommended Learning Resources/Tools
I-MARO-202Not applicable
I-ILIA-202Not applicable

Other Recommended Reading

AAOther Recommended Reading
I-MARO-202Not applicable
I-ILIA-202Not applicable

Grade Deferrals of AAs from one year to the next

AAGrade Deferrals of AAs from one year to the next
I-MARO-202Unauthorized
I-ILIA-202Unauthorized

Term 1 Assessment - type

AAType(s) and mode(s) of Q1 assessment
I-MARO-202
  • Production (written work, report, essay, collection, product, etc.) - To be submitted online
I-ILIA-202
  • Production (written work, report, essay, collection, product, etc.) - To be submitted online

Term 1 Assessment - comments

AATerm 1 Assessment - comments
I-MARO-202Theoretical exam and presentation of a practical project on the computer  
I-ILIA-202Presentation of an AI solution treating energetic data and using deep neural networks :  MLP, CNN, RNN, LSTM, Transformers, etc.

Resit Assessment - Term 1 (B1BA1) - type

AAType(s) and mode(s) of Q1 resit assessment (BAB1)
I-MARO-202
  • Production (written work, report, essay, collection, product, etc.) - To be submitted online
I-ILIA-202
  • Production (written work, report, essay, collection, product, etc.) - To be submitted online

Term 3 Assessment - type

AAType(s) and mode(s) of Q3 assessment
I-MARO-202
  • Production (written work, report, essay, collection, product, etc.) - To be submitted online
I-ILIA-202
  • Production (written work, report, essay, collection, product, etc.) - To be submitted online

Term 3 Assessment - comments

AATerm 3 Assessment - comments
I-MARO-202same as Q1
I-ILIA-202Idem Q1
(*) HT : Hours of theory - HTPE : Hours of in-class exercices - HTPS : hours of practical work - HD : HMiscellaneous time - HR : Hours of remedial classes. - Per. (Period), Y=Year, Q1=1st term et Q2=2nd term
Date de dernière mise à jour de la fiche ECTS par l'enseignant : 16/05/2023
Date de dernière génération automatique de la page : 18/05/2024
20, place du Parc, B7000 Mons - Belgique
Tél: +32 (0)65 373111
Courriel: info.mons@umons.ac.be