Study programme 2024-2025Français
Numerical Methods
Learning Activity
CodeLecturer(s)Associate Lecturer(s)Subsitute Lecturer(s) et other(s)Establishment
I-FLMA-016
  • COUSSEMENT Grégory
  • DE PAEPE Ward
  • LOBRY Jacques
        Language
        of instruction
        Language
        of assessment
        HT(*) HTPE(*) HTPS(*) HR(*) HD(*) Term
        AnglaisAnglais5418000Q1


        Content of Learning Activity

        Part 1 : Introduction
        Numerical simulation in the world of virtual prototyping et place and interest of CFD (Computational Fluid Dynamics), CHT (Computational Heat transfer) and CEM (Computational Electromagnetics) for digital twins
        Simulation process and Requirements for CHT, CEM and CFD simulations
        Reminder on the Navier-Stokes PDEs (Partial Differential Equations) for flows, Fourier-Kirchhoff equation for heat transfer, Maxwell PDEs for electromagnetism
        Mathematical nature of PDEs and influence on the numerical method
        Well-posed problem, boundary conditions and initial conditions 
        Discrete approximation of the solution: Issue on time scale (time refinement) and space scale (space refinement)
        Finite Difference Method (FDM): Notion of truncation error and accuracy and link with polynomial interpolation

        Part 2 :  Electromagnetic Modelling and Numerical Methods for CEM
        Formulations and modelling : Fields, differential operators and PDEs, electromagnetic modelling and related formulations, local and global quantities 
        The FEM for CEM: Domain decomposition, nodal approximation and application to magnetostatic problems, Variational formulation and FEM: The Rayleigh‐Ritz method, Nonlinear problems, Transient problems, FEM and multiphysics
        Integral equations and related numerical methods: Dirac delta " function " and Green’s functions, The Boundary Element Method, Dirac and FEM
        Solutions of simultaneous set of linear equations: Direct & Iterative Methods
        Weak formulation and FEM
        Whitney elements

        Part 3 : Flow and Heat Transfer Modelling with FVM for CFD and CHT
        Basic numerical schemes: Time explicit and time implicit schemes
        Resulting ODEs (Ordinary Differential Equations) of the FVM formulation
        Spatial and temporal discretisation: Convective flux discretisation with central and upwind schemes, diffusive flux discretisation, temporal discretisation (implicit schemes, explicit and Runge-Kutta schemes, implicit dual time-stepping approach)
        Acceleration techniques 
        Density-based and pressure-based schemes for incompressible flows 
        Some specificities for NHT 
        Consistency, stability, and convergence 
        Boundary conditions treatments for compressible flows

        Part 4 :  Project

        Required Learning Resources/Tools

        Not applicable

        Recommended Learning Resources/Tools

        Not applicable

        Other Recommended Reading

        Not applicable

        Mode of delivery

        • Face-to-face

        Type of Teaching Activity/Activities

        • Cours magistraux
        • Ateliers et projets encadrés au sein de l'établissement

        Evaluations

        The assessment methods of the Learning Activity (AA) are specified in the course description of the corresponding Educational Component (UE)

        (*) HT : Hours of theory - HTPE : Hours of in-class exercices - HTPS : hours of practical work - HD : HMiscellaneous time - HR : Hours of remedial classes. - Per. (Period), Y=Year, Q1=1st term et Q2=2nd term
        Date de dernière mise à jour de la fiche ECTS par l'enseignant : 14/05/2024
        Date de dernière génération automatique de la page : 30/11/2024
        20, place du Parc, B7000 Mons - Belgique
        Tél: +32 (0)65 373111
        Courriel: info.mons@umons.ac.be