Study programme 2024-2025Français
Advanced and Streaming AI
Programme component of Master's in Computer Science (MONS) (day schedule) à la Faculty of Science

CodeTypeHead of UE Department’s
contact details
Teacher(s)
US-M1-SCINFO-060-MOptional UESIEBERT XavierF151 - Mathématique et Recherche opérationnelle
  • MAHMOUDI Sidi
  • SIEBERT Xavier

Language
of instruction
Language
of assessment
HT(*) HTPE(*) HTPS(*) HR(*) HD(*) CreditsWeighting Term
  • Anglais, Français
  • Anglais
Anglais, Français, Anglais303000055.001st term

AA CodeTeaching Activity (AA) HT(*) HTPE(*) HTPS(*) HR(*) HD(*) Term Weighting
I-ILIA-202Advanced Deep Learning66000Q120.00%
I-MARO-218Advanced Machine Learning2424000Q180.00%

Programme component

Objectives of Programme's Learning Outcomes

  • Manage large-scale software development projects.
    • Apply, mobilise, articulate and promote the knowledge and skills acquired in order to help lead and complete a project.
    • Demonstrate independence and their ability to work alone or in teams.
  • Manage research, development and innovation.
    • Understand unprecedented problems in computer science and its applications.
    • Organise and lead a research, development or innovation project to completion.
  • Master communication techniques.
    • Communicate, both orally and in writing, their findings, original proposals, knowledge and underlying principles, in a clear, structured and justified manner.
  • Develop and integrate a high degree of autonomy.
    • Aquire new knowledge independently.
    • Pursue further training and develop new skills independently.
  • Apply scientific methodology.
    • Critically reflect on the impact of IT in general, and on the contribution to projects.
    • Demonstrate thoroughness, independence, creativity, intellectual honesty, and ethical values.

Learning Outcomes of UE

Get familiar with the contemporary methods in machine learning (active learning, reinforcement learning, depp networks) Study these methods within the frameworks of statistical learning theory

UE Content: description and pedagogical relevance

active learning, reinforcement learning, deep network, statistical learning theory

Prior Experience

machine learning basics, python programming

Type of Teaching Activity/Activities

AAType of Teaching Activity/Activities
I-ILIA-202
  • Cours magistraux
  • Travaux pratiques
  • Projet sur ordinateur
  • Etudes de cas
I-MARO-218
  • Cours magistraux
  • Travaux pratiques

Mode of delivery

AAMode of delivery
I-ILIA-202
  • Face-to-face
I-MARO-218
  • Remote

Required Learning Resources/Tools

AARequired Learning Resources/Tools
I-ILIA-202Not applicable
I-MARO-218Not applicable

Recommended Learning Resources/Tools

AARecommended Learning Resources/Tools
I-ILIA-202Not applicable
I-MARO-218Not applicable

Other Recommended Reading

AAOther Recommended Reading
I-ILIA-202Not applicable
I-MARO-218Not applicable

Grade Deferrals of AAs from one year to the next

AAGrade Deferrals of AAs from one year to the next
I-ILIA-202Unauthorized
I-MARO-218Unauthorized

Term 1 Assessment - type

AAType(s) and mode(s) of Q1 assessment
I-ILIA-202
  • Production (written work, report, essay, collection, product, etc.) - To be submitted online
I-MARO-218
  • Production (written work, report, essay, collection, product, etc.) - To be submitted online

Term 1 Assessment - comments

AATerm 1 Assessment - comments
I-ILIA-202Presentation of an AI solution treating energetic data and using deep neural networks :  MLP, CNN, RNN, LSTM, Transformers, etc.
I-MARO-218Project on a topic linked to the course

Resit Assessment - Term 1 (B1BA1) - type

AAType(s) and mode(s) of Q1 resit assessment (BAB1)
I-ILIA-202
  • Production (written work, report, essay, collection, product, etc.) - To be submitted online
I-MARO-218
  • N/A - Néant

Term 3 Assessment - type

AAType(s) and mode(s) of Q3 assessment
I-ILIA-202
  • Production (written work, report, essay, collection, product, etc.) - To be submitted online
I-MARO-218
  • Production (written work, report, essay, collection, product, etc.) - To be submitted online

Term 3 Assessment - comments

AATerm 3 Assessment - comments
I-ILIA-202Idem Q1
I-MARO-218same as Q1
(*) HT : Hours of theory - HTPE : Hours of in-class exercices - HTPS : hours of practical work - HD : HMiscellaneous time - HR : Hours of remedial classes. - Per. (Period), Y=Year, Q1=1st term et Q2=2nd term
Date de dernière mise à jour de la fiche ECTS par l'enseignant : 16/05/2024
Date de dernière génération automatique de la page : 07/09/2024
20, place du Parc, B7000 Mons - Belgique
Tél: +32 (0)65 373111
Courriel: info.mons@umons.ac.be