Programme d’étudesEnglish
Projet en géométrie algébrique (Liste A)
Unité d’enseignement du programme de Master en sciences mathématiques à la Faculté des Sciences
CodeTypeResponsable Coordonnées
du service
Enseignant(s)
US-M1-SCMATH-003-MUE optionnelleVOLKOV MajaS843 - Géométrie algébrique
  • VOLKOV Maja

Langue
d’enseignement
Langue
d’évaluation
HT(*) HTPE(*) HTPS(*) HR(*) HD(*) CréditsPondération Période
d’enseignement
  • Français
Français300900012.00100.00

Code(s) d’AAActivité(s) d’apprentissage (AA) HT(*) HTPE(*) HTPS(*) HR(*) HD(*) Période
d’enseignement
Pondération
S-MATH-046Projet en géométrie algébrique3009000A100.00%

Unité d'enseignement

Objectifs par rapport aux acquis d'apprentissage du programme

  • Posséder des connaissances mathématiques intégrées et pointues
    • -Pouvoir mobiliser les mathématiques de bachelier pour traiter de questions complexes et posséder une expertise profonde de celles-ci, prolongeant celle développée en bachelier.
    • -Être capable d'utiliser ses connaissances antérieures pour apprendre des mathématiques de haut niveau de manière autonome.
    • -Être à même de rechercher la littérature mathématique de manière efficace et pertinente.
  • Être capable de réaliser des projets d'envergure
    • -Être capable d'utiliser les ressources bibliographiques de manière adaptée au but poursuivi.
    • -Pouvoir présenter oralement et par écrit les objectifs et les résultats d'un projet.
  • Pouvoir communiquer clairement
    • -Être capable de faire une présentation structurée et argumentée du contenu et des principes sous-tendant un travail, des connaissances mobilisées et des conclusions auxquelles il conduit.
  • Être capable de s'adapter à différents contextes
    • -Faire preuve de rigueur, d'autonomie, de créativité, d'honnêteté intellectuelle, de sens éthique et déontologique

Acquis d'apprentissage UE

Introduction à l'algèbre commutative.
Introduction à la géométrie algébrique affine et projective.
L'objectif du cours est la maîtrise de la correspondance entre la géometrie algébrique et l'algèbre commutative sur un corps algébriquement clos.

Contenu de l'UE

Arithmétique des anneaux de polynômes, modules,  intégralité, anneaux Noetheriens, localisation.
Hilberts Nullstellensatz, topologie de Zariski, irréductibilité topologique, applications régulières, produits, applications rationnelles, dimension, lissité.
Espace projectif, objets projectifs et quasi-projectifs, morphismes.

Compétences préalables

Cours d'algèbre du programme de Bachelier, topologie générale élémentaire.

Types d'évaluations Q1 pour l'UE

  • Présentation et travaux

Commentaire sur les évaluations Q1 de l'UE

Sans objet

Types d'évaluations Q2 pour l'UE

  • Présentation et travaux

Commentaire sur les évaluations Q2 de l'UE

Sans objet

Types d'évaluation Q3 pour l'UE

  • Présentation et travaux

Commentaire sur les évaluations Q3 de l'UE

Sans objet

Commentaire sur les évaluations rattr. Q1 de l'UE

Sans objet

Types d'activités

AATypes d'activités
S-MATH-046
  • Cours magistraux
  • Conférences
  • Préparations, travaux, recherches d'information

Mode d'enseignement

AAMode d'enseignement
S-MATH-046
  • Face à face

Supports principaux

AA
S-MATH-046

Supports principaux non reproductibles

AASupports principaux non reproductibles
S-MATH-046Sans objet

Supports complémentaires

AA
S-MATH-046

Supports complémentaires non reproductibles

AASupport complémentaires non reproductibles
S-MATH-046S. Lang, Algebra, Graduate Texts in Mathematics 211, Springer-Verlag
M.F. Atiyah and I.G. Macdonald, Introduction to Commutative Algebra, Addison-Wesley
M. Reid, Undergraduate Algebraic Geometry, London Mathematical Society Student Texts, Cambridge University Press
I.R. Shafarevich, Basic Algebraic Geometry Volume 1, Springer-Verlag
D. Perrin, Géométrie Algébrique, CNRS Editions

Autres références conseillées

AAAutres références conseillées
S-MATH-046Sans objet

Reports des notes d'AA d'une année à l'autre

AAReports des notes d'AA d'une année à l'autre
S-MATH-046Autorisé
Date de génération : 17/03/2017
20, place du Parc, B7000 Mons - Belgique
Tél: +32 (0)65 373111
Courriel: info.mons@umons.ac.be