Programme d’études 2018-2019English
Advanced Machine Learning
Unité d’enseignement du programme de Master ingénieur civil en informatique et gestion à la Faculté Polytechnique
CodeTypeResponsable Coordonnées
du service
Enseignant(s)
UI-M2-IRIGIG-103-MUE ObligatoireSIEBERT XavierF151 - Mathématique et Recherche opérationnelle
  • SIEBERT Xavier

Langue
d’enseignement
Langue
d’évaluation
HT(*) HTPE(*) HTPS(*) HR(*) HD(*) CréditsPondération Période
d’enseignement
  • Anglais
Anglais242400044.001er quadrimestre

Code(s) d’AAActivité(s) d’apprentissage (AA) HT(*) HTPE(*) HTPS(*) HR(*) HD(*) Période
d’enseignement
Pondération
I-MARO-202Advanced Machine Learning2424000Q1100.00%

Unité d'enseignement

Objectifs par rapport aux acquis d'apprentissage du programme

  • Imaginer, concevoir, réaliser et mettre en oeuvre des modèles conceptuels et des solutions informatiques pour répondre à des problèmes complexes notamment de décision, d'optimisation, de gestion et de production dans le cadre d'une démarche d'innovation en entreprise en intégrant l'évolution des besoins, contextes et enjeux (techniques, économiques, sociétaux, éthiques et environnementaux).
    • Sur base d'une modélisation, concevoir un système ou une stratégie répondant au problème posé ; les évaluer compte tenu des différents paramètres du cahier des charges.
    • Concrétiser une solution choisie sous la forme de diagrammes, de graphes, de prototypes, de logiciels et/ou de modèles numériques.
  • Mobiliser un ensemble structuré de connaissances et compétences scientifiques et techniques spécialisées permettant de répondre, avec expertise et adaptabilité, aux missions de l'ingénieur civil en Informatique et Gestion
    • Maîtriser et mobiliser de façon pertinente des connaissances, des modèles, des méthodes et des techniques relatifs au domaine de l'Informatique et Gestion
    • Evaluer la validité des modèles et des résultats compte tenu de l'état de la science et des caractéristiques du problème.
  • Communiquer et échanger des informations de manière structurée - oralement, graphiquement et par écrit, en français et dans une ou plusieurs autres langues - sur les plans scientifique, culturel, technique et interpersonnel en s'adaptant au but poursuivi et au public concerné.
    • Utiliser et produire des documents scientifiques et techniques (modélisation mathématique, architecture des données et du logiciel, rapport, cahier des charges, analyse financière, documentation et manuels, ...) adaptés au but poursuivi et au public concerné.
  • Agir en professionnel responsable, faisant preuve d'ouverture et d'esprit critique, inscrit dans une démarche de développement professionnel autonome.
    • Exploiter les différents moyens mis à disposition pour se documenter et se former de manière autonome.
  • Contribuer par un travail de recherche à la solution innovante d'une problématique en sciences de l'ingénieur.
    • Construire un cadre théorique ou conceptuel de référence, formuler des solutions innovantes à partir de l'analyse de la littérature scientifique, notamment dans des champs disciplinaires nouveaux ou émergents.
    • Concevoir et mettre en oeuvre des analyses conceptuelles, des modélisations numériques, des implémentations logicielles, des études expérimentales et des analyses comportementales.
    • Récolter et analyser des données avec rigueur.
    • Interpréter adéquatement des résultats en tenant compte du cadre de référence au sein duquel la recherche s'est développée.
    • Communiquer, à l'écrit et à l'oral, sur la démarche et ses résultats en mettant en évidence tant les critères de scientificité de la recherche menée, que les potentialités d'innovation théoriques ou techniques et les possibles enjeux non techniques.

Acquis d'apprentissage UE

Se familiariser avec les techniques contemporaines en analyse des données et en intelligence artificielle (apprentissage actif, apprentissage par renforcement, réseaux de neurones profonds). Etudier ces méthodes dans le cadre de la théorie de l'apprentissage statistique.

Contenu de l'UE

apprentissage actif, apprentissage par renforcement, réseaux de neurones profonds théorie de l'apprentissage statistique.

Compétences préalables

Sans objet

Types d'évaluations Q1 pour l'UE

  • Présentation et/ou travaux
  • Examen écrit

Commentaire sur les évaluations Q1 de l'UE

épreuve théorique et présentation d'un projet sur logicial

Types d'évaluation Q3 pour l'UE

  • Présentation et/ou travaux
  • Examen écrit

Commentaire sur les évaluations Q3 de l'UE

idem Q1

Types d'évaluation rattrapage BAB1 (Q1) pour l'UE

  • Néant

Commentaire sur les évaluations rattr. Q1 de l'UE

n/a

Types d'activités

AATypes d'activités
I-MARO-202
  • Cours magistraux
  • Travaux pratiques

Mode d'enseignement

AAMode d'enseignement
I-MARO-202
  • Face à face

Supports principaux

AA
I-MARO-202

Supports principaux non reproductibles

AASupports principaux non reproductibles
I-MARO-202Sans objet

Supports complémentaires

AA
I-MARO-202

Supports complémentaires non reproductibles

AASupport complémentaires non reproductibles
I-MARO-202Sans objet

Autres références conseillées

AAAutres références conseillées
I-MARO-202Sans objet

Reports des notes d'AA d'une année à l'autre

AAReports des notes d'AA d'une année à l'autre
I-MARO-202Autorisé
(*) HT : Heures théoriques - HTPE : Heures de travaux pratiques encadrés - HTPS : Heures de travaux pratiques supervisés - HD : Heures diverses - HR : Heures de remédiation - Dans la colonne Pér. (Période), A=Année, Q1=1er quadrimestre et Q2=2e quadrimestre
Date de génération : 02/05/2019
20, place du Parc, B7000 Mons - Belgique
Tél: +32 (0)65 373111
Courriel: info.mons@umons.ac.be