Programme d’études 2019-2020English
Computational Electromagnetics
Unité d’enseignement du programme de Master : ingénieur civil électricien, à finalité spécialisée en Electrical Energy and Smart Grids à la Faculté Polytechnique

Les étudiants sont invités à consulter les fiches ECTS des AA pour prendre connaissance des modalités d’évaluation prévues pour la fin du Q3

CodeTypeResponsable Coordonnées
du service
Enseignant(s)
UI-M2-IRELEE-002-MUE ObligatoireLOBRY JacquesF901 - Physique Générale
  • DEBLECKER Olivier
  • LOBRY Jacques

Langue
d’enseignement
Langue
d’évaluation
HT(*) HTPE(*) HTPS(*) HR(*) HD(*) CréditsPondération Période
d’enseignement
  • Anglais
Anglais, Français222600044.001er quadrimestre

Code(s) d’AAActivité(s) d’apprentissage (AA) HT(*) HTPE(*) HTPS(*) HR(*) HD(*) Période
d’enseignement
Pondération
I-GELE-012Computational Electromagnetics2226000Q1100.00%

Unité d'enseignement

Objectifs par rapport aux acquis d'apprentissage du programme

  • Communiquer et échanger des informations de manière structurée - oralement, graphiquement et par écrit, en français et dans une ou plusieurs autres langues - sur les plans scientifique, culturel, technique et interpersonnel en s'adaptant au but poursuivi et au public concerné.
    • Argumenter et convaincre, tant à l'oral qu'à l'écrit, vis-à-vis de ses collaborateurs, d'un client, des enseignants et des jurys.
  • Imaginer, mettre en oeuvre et exploiter des systèmes / solutions / logiciels pour faire face à un problème complexe dans le domaine de l'électricité en tant que vecteur énergétique essentiel dans nos sociétés modernes en intégrant les besoins, contextes et enjeux (techniques, économiques, sociétaux, éthiques et environnementaux).
    • Sur base de modélisations et d'expérimentations, concevoir un ou plusieurs systèmes / une ou plusieurs solutions / un ou plusieurs logiciels répondant au problème posé ; les évaluer compte tenu des différents paramètres du cahier des charges.
    • Mettre en oeuvre un système / une solution / un logiciel choisi sous la forme d'un dessin, d'un schéma, d'un plan, d'une maquette, d'un prototype, d'un software et/ou d'un modèle numérique.
  • Mobiliser un ensemble structuré de connaissances et compétences scientifiques et techniques spécialisées permettant de répondre, avec expertise et adaptabilité, aux missions de l'ingénieur civil en Electricité à finalité Energie Electrique
    • Maîtriser et mobiliser de façon pertinente des connaissances, des modèles, des méthodes et des techniques relatifs aux bases de l'électricité, de l'électronique, de l'automatique, de l'analyse et du traitement des signaux, des télécommunications ; à l'électrotechnique (machines électriques, électronique de puissance) ; à l'ingénierie des réseaux électriques (production, transport et distribution) ; à l'essor des sources d'énergies renouvelables (éolien, photovoltaïque) ; à l'élaboration, la mise oeuvre, l'exploitation écoresponsable des systèmes électriques ; aux techniques spécifiques à la modélisation numérique des dispositifs de puissance.
    • Analyser et modéliser un problème en sélectionnant de manière critique des théories et des approches méthodologiques (modélisation, calculs), y compris en tenant compte des aspects pluridisciplinaires.
    • Evaluer la validité des modèles et des résultats compte tenu de l'état l'art de la science et des caractéristiques du problème.
  • Planifier, gérer et mener à bien des projets compte tenu de leurs objectifs, ressources et contraintes et en assurant la qualité des activités et des livrables.
    • Définir et cadrer le projet compte tenu de ses objectifs, ressources et contraintes.
    • Evaluer la démarche et les réalisations, les réguler compte tenu des constats faits et des feedbacks reçus.
    • Respecter les échéances et le plan de travail.
  • Communiquer et échanger des informations de manière structurée - oralement, graphiquement et par écrit, en français et dans une ou plusieurs autres langues - sur les plans scientifique, culturel, technique et interpersonnel en s'adaptant au but poursuivi et au public concerné.
    • Argumenter et convaincre, tant à l'oral qu'à l'écrit, vis-à-vis de ses collaborateurs, d'un client, des enseignants et des jurys.

Acquis d'apprentissage UE

Aborder de façon critique un problème de calcul de champ dans une structure électrotechnique sous les aspects: modéle mathématique, estimation de la solution par un calcul approché, méthodes numériques, encodage sur un logiciel de CAO.

Contenu de l'UE

Présentation des formulations classiques utilisées dans l'étude des problèmes de courants induits et de magnétisme stationnaire ; mise en équation en termes de potentiels; étude approfondie du cas statique bidimensionnel; grandeurs électromagnétiques locales et caractéristiques globales d'un système ; étude des procédés numériques de résolution des équations différentielles: différences finies, éléments finis, méthode des moments et méthode des éléments de frontières.

Compétences préalables

Notions d'électromagnétisme; équations de Maxwell; machines électriques; analyse numérique.

Types d'évaluations Q1 pour l'UE

  • Présentation et/ou travaux
  • Examen écrit

Commentaire sur les évaluations Q1 de l'UE

Projet de dimensionnement de structure magnétique est réalisé par groupe. Examen écrit où l'étudiant doit démontrer sa maîtrise de la compréhension d'un problème posé : évaluation de sa solution avant tout calcul numérique, étape indispensable pour juger de la pertinence des résultats futurs ; préparation des données géométriques, physiques et conditions aux limites nécessaires et suffisantes à encoder pour une modélisation correcte ; choix d'un maillage adéquat. Il sera aussi demandé d'interpréter la nature discrète d'une solution numérique de calcul de champs. Pondération :
Projet (20 h) : 30%
Examen (3h) : 70%

Types d'évaluation Q3 pour l'UE

  • Examen écrit

Commentaire sur les évaluations Q3 de l'UE

Pondération :

Projet (20 h) : 30%
Examen (3h) : 70%

Types d'évaluation rattrapage BAB1 (Q1) pour l'UE

  • Néant

Commentaire sur les évaluations rattr. Q1 de l'UE

Sans objet

Types d'activités

AATypes d'activités
I-GELE-012
  • Cours magistraux
  • Ateliers et projets encadrés au sein de l'établissement

Mode d'enseignement

AAMode d'enseignement
I-GELE-012
  • Face à face

Supports principaux

AA
I-GELE-012

Supports principaux non reproductibles

AASupports principaux non reproductibles
I-GELE-012Sans objet

Supports complémentaires

AA
I-GELE-012

Supports complémentaires non reproductibles

AASupport complémentaires non reproductibles
I-GELE-012Sans objet

Autres références conseillées

AAAutres références conseillées
I-GELE-012Finite elements for electrical engineers, P.P. Silvester & R.L. Ferrari, Cambridge University Press, 1983.
Numerical Methods in electromagnetism, M.V.K. Chari & S.J. Salon, Academic Press, 2000.
Electromagnétisme et éléments finis, 3 tomes, Traité EGEM, Hermes-Science, Lavoisier, 2002.

Reports des notes d'AA d'une année à l'autre

AAReports des notes d'AA d'une année à l'autre
I-GELE-012Autorisé
(*) HT : Heures théoriques - HTPE : Heures de travaux pratiques encadrés - HTPS : Heures de travaux pratiques supervisés - HD : Heures diverses - HR : Heures de remédiation - Dans la colonne Pér. (Période), A=Année, Q1=1er quadrimestre et Q2=2e quadrimestre
Date de génération : 13/07/2020
20, place du Parc, B7000 Mons - Belgique
Tél: +32 (0)65 373111
Courriel: info.mons@umons.ac.be