Programme d’études 2020-2021English
Algèbre linéaire et géométrie II
Unité d’enseignement du programme de Bachelier en sciences mathématiques à la Faculté des Sciences

Les étudiants sont invités à consulter les fiches ECTS des AA pour prendre connaissance des modalités d’évaluation spéciales Covid-19 éventuellement prévues pour la fin du Q3

CodeTypeResponsable Coordonnées
du service
Enseignant(s)
US-B2-SCMATH-003-MUE ObligatoireVOLKOV MajaS843 - Géométrie algébrique
  • VOLKOV Maja

Langue
d’enseignement
Langue
d’évaluation
HT(*) HTPE(*) HTPS(*) HR(*) HD(*) CréditsPondération Période
d’enseignement
  • Français
Français301500044.001er quadrimestre

Code(s) d’AAActivité(s) d’apprentissage (AA) HT(*) HTPE(*) HTPS(*) HR(*) HD(*) Période
d’enseignement
Pondération
S-MATH-008Algèbre linéaire et géométrie II3015000Q1100.00%

Unité d'enseignement

Objectifs par rapport aux acquis d'apprentissage du programme

  • Comprendre de manière profonde les mathématiques " élémentaires ".
    • Pouvoir utiliser les espaces vectoriels, les applications linéaires et les techniques qui leur sont associées.
    • Comprendre et pouvoir utiliser la théorie naïve des ensembles.
    • Comprendre les structures algébriques de base.
    • Manipuler les acquis antérieurs qui interviennent dans une question.
    • Etre capable de donner des exemples et des contre-exemples (pour les définitions, les propriétés, les théorèmes,...)
  • Comprendre et produire des raisonnements rigoureux en mathématiques.
    • Etre capable de rédiger dans une expression claire et concise.
    • Pouvoir utiliser le vocabulaire mathématique et le formalisme à bon escient.
    • Etre capable de donner du sens à des expressions formelles.
    • Etre capable de s'appuyer sur un dessin pour éclairer une notion, un raisonnement,...
  • Résoudre des problèmes nouveaux.
    • Capacité à l'abstraction, à la manipulation de théories formelles et à l'utilisation de celles-ci pour résoudre des problèmes.
    • Etre capable d'adapter un argument à une situation similaire.
    • Utiliser les connaissances issues de différents domaines pour traiter des questions.

Acquis d'apprentissage UE

Résultats de structure en algèbre linéaire : réduction des endomorphismes et théorie spectrale dans les espaces euclidiens.
L'objectif de ce cours est de développer la théorie algébrique des algèbres d'endomorphismes d'espaces vectoriels de dimension finie, éventuellement munis d'une forme bilinéaire symétrique définie.

Contenu de l'UE

Diagonalisation, valeur propre, vecteur propre, polynôme caractéristique, polynôme minimal, théorème de Cayley-Hamilton, décomposition de Jordan-Chevalley.
Dualité, forme bilinéaire symétrique, orthogonalité, non-dégénérécence, endomorphisme transposé et adjoint, automorphisme, base orthogonale, forme définie.
Espace euclidien, norme, base orthonormale, procédé de Gram-Schmidt, théorème spectral.

Compétences préalables

Cours d'Algèbre linéaire et géométrie I.

Types d'évaluations Q1 pour l'UE

  • Examen écrit

Commentaire sur les évaluations Q1 de l'UE

Sans objet

Types d'évaluation Q3 pour l'UE

  • Examen écrit

Commentaire sur les évaluations Q3 de l'UE

Sans objet

Types d'évaluation rattrapage BAB1 (Q1) pour l'UE

  • Néant

Commentaire sur les évaluations rattr. Q1 de l'UE

Sans objet

Types d'activités

AATypes d'activités
S-MATH-008
  • Cours magistraux
  • Exercices dirigés

Mode d'enseignement

AAMode d'enseignement
S-MATH-008
  • Face à face

Supports principaux

AA
S-MATH-008

Supports principaux non reproductibles

AASupports principaux non reproductibles
S-MATH-008Sans objet

Supports complémentaires

AA
S-MATH-008

Supports complémentaires non reproductibles

AASupport complémentaires non reproductibles
S-MATH-008S. Lang, Algèbre linéaire 2, InterEditions
R. Mansuy & R. Mneimné, Algèbre linéaire : Réduction des endomorphismes, Vuibert.

Autres références conseillées

AAAutres références conseillées
S-MATH-008Sans objet

Reports des notes d'AA d'une année à l'autre

AAReports des notes d'AA d'une année à l'autre
S-MATH-008Autorisé
(*) HT : Heures théoriques - HTPE : Heures de travaux pratiques encadrés - HTPS : Heures de travaux pratiques supervisés - HD : Heures diverses - HR : Heures de remédiation - Dans la colonne Pér. (Période), A=Année, Q1=1er quadrimestre et Q2=2e quadrimestre
Date de génération : 09/07/2021
20, place du Parc, B7000 Mons - Belgique
Tél: +32 (0)65 373111
Courriel: info.mons@umons.ac.be