Programme d’études 2020-2021English
Analyse complexe
Unité d’enseignement du programme de Bachelier en sciences mathématiques à la Faculté des Sciences

Les étudiants sont invités à consulter les fiches ECTS des AA pour prendre connaissance des modalités d’évaluation spéciales Covid-19 éventuellement prévues pour la fin du Q3

CodeTypeResponsable Coordonnées
du service
Enseignant(s)
US-B3-SCMATH-038-MUE ObligatoireBRIHAYE ThomasS820 - Mathématiques effectives
  • BRIHAYE Thomas

Langue
d’enseignement
Langue
d’évaluation
HT(*) HTPE(*) HTPS(*) HR(*) HD(*) CréditsPondération Période
d’enseignement
  • Français
Français202000044.001er quadrimestre

Code(s) d’AAActivité(s) d’apprentissage (AA) HT(*) HTPE(*) HTPS(*) HR(*) HD(*) Période
d’enseignement
Pondération
S-MATH-009Analyse complexe2020000Q1100.00%

Unité d'enseignement

Objectifs par rapport aux acquis d'apprentissage du programme

  • Comprendre de manière profonde les mathématiques " élémentaires ".
    • Maîtriser le calcul différentiel et intégral à une et plusieurs variables.
    • Manipuler les acquis antérieurs qui interviennent dans une question.
    • Etre capable de donner des exemples et des contre-exemples (pour les définitions, les propriétés, les théorèmes,...)
  • Comprendre et produire des raisonnements rigoureux en mathématiques.
    • Etre capable de rédiger dans une expression claire et concise.
    • Pouvoir utiliser le vocabulaire mathématique et le formalisme à bon escient.
    • Etre capable de donner du sens à des expressions formelles.
    • Etre capable de s'appuyer sur un dessin pour éclairer une notion, un raisonnement,...
  • Résoudre des problèmes nouveaux.
    • Capacité à l'abstraction, à la manipulation de théories formelles et à l'utilisation de celles-ci pour résoudre des problèmes.
    • Etre capable d'adapter un argument à une situation similaire.

Acquis d'apprentissage UE

Comprendre les aspects théoriques présentés dans le cours et les utiliser avec discernement dans le cadre d'exercices.
Comprendre les différences fondamentales entre l'analyse complexe et l'analyse réelle.

Contenu de l'UE

Notion de fonction holomorphe.Equations de Cauchy-Riemann.
Intégration d'une fonction complexe le long d'un chemin. Théorème de Cauchy.
Série de puissances entières. Développement de Taylor et de Laurent.
Théorème des résidus.

Compétences préalables

Manipulation des nombres complexes (et donc en particulier des fractions): forme algébrique et trigonométrique, représentation dans le plan complexe, addition, multiplication, calcul de l'inverse, formule de de Moivre, résolutions d'équations polynomiales,...
Analyse réelle: maîtrise des fonctions élémentaires (sinus, cosinus, exponentielle, logarithme,...), notions de fonctions injectives, surjectives et bijectives, convergence de suites et séries réelles, calcul différentiel et intégral à une variable réelle, développement de Taylor pour les fonctions d'une variable réelle.

Types d'évaluations Q1 pour l'UE

  • Examen écrit

Commentaire sur les évaluations Q1 de l'UE

/

Types d'évaluations Q2 pour l'UE

  • Examen écrit

Commentaire sur les évaluations Q2 de l'UE

Sans objet

Types d'évaluation Q3 pour l'UE

  • Examen écrit

Commentaire sur les évaluations Q3 de l'UE

Sans objet

Types d'évaluation rattrapage BAB1 (Q1) pour l'UE

  • Néant

Commentaire sur les évaluations rattr. Q1 de l'UE

/

Types d'activités

AATypes d'activités
S-MATH-009
  • Cours magistraux
  • Exercices dirigés

Mode d'enseignement

AAMode d'enseignement
S-MATH-009
  • Face à face

Supports principaux

AA
S-MATH-009

Supports principaux non reproductibles

AASupports principaux non reproductibles
S-MATH-009Sans objet

Supports complémentaires

AA
S-MATH-009

Supports complémentaires non reproductibles

AASupport complémentaires non reproductibles
S-MATH-009Sans objet

Autres références conseillées

AAAutres références conseillées
S-MATH-009Sans objet

Reports des notes d'AA d'une année à l'autre

AAReports des notes d'AA d'une année à l'autre
S-MATH-009Non autorisé
(*) HT : Heures théoriques - HTPE : Heures de travaux pratiques encadrés - HTPS : Heures de travaux pratiques supervisés - HD : Heures diverses - HR : Heures de remédiation - Dans la colonne Pér. (Période), A=Année, Q1=1er quadrimestre et Q2=2e quadrimestre
Date de génération : 09/07/2021
20, place du Parc, B7000 Mons - Belgique
Tél: +32 (0)65 373111
Courriel: info.mons@umons.ac.be